BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 199—202 (1969)

A New Synthesis of Tephrosic Acid*1

Kenji Fukui, Mitsuru Nakayama and Teruo Harano

Department of Chemistry, Faculty of Science, Hiroshima University, Higashi Sendamachi, Hiroshima (Received May 27, 1968)

2'-Carboethoxymethoxy-4',5'-dimethoxy-7-hydroxyisoflavone was prepared from 7-benzyloxy-4',5'-dimethoxy-2'-hydroxyisoflavone via the corresponding 2'-carboethoxymethoxyisoflavone. The hydrolysis of the 7-hydroxyisoflavone with dilute alkali gave tephrosic acid (2,4-dihydroxyphenyl 2-carboxymethoxy-4,5-dimethoxybenzyl ketone) in a good yield.

Tephrosic acid (I) is an important intermediate in synthesizing rotenoids (e. g., elliptone (II) and munduserone (III)). This acid, I, has been prepared from resorcinol and ethyl (2-cyanomethyl-4,5-dimethoxyphenoxy)acetate (IV) by the Hoesch reaction.¹⁾ However, the preparation of the ester IV has been found to be disadvantageous because

of either a poor over-all yield or the tediousness of separating an intermediate difficult to crystallize. The present paper will describe a convenient method of synthesizing I from 7-benzyloxy-4',5'-dimethoxy-2'-hydroxyisoflavone (V)²⁾ according to a modification of a procedure reported earlier by the present

^{*1} The results of this investigation were presented at the 20th Annual Meeting of the Chemical Society of Japan, Tokyo, April, 1967.

¹⁾ A. Robertson, J. Chem. Soc., 1932, 1163.

²⁾ K. Fukui, M. Nakayama, T. Harano and H. Tsuge, 10th Symposium on the Chemistry of Natural Products, Symposium Papers, Tokyo (Oct., 1966), p. 145; K. Fukui, M. Nakayama and T. Harano, This Bulletin, 42, 233 (1969).

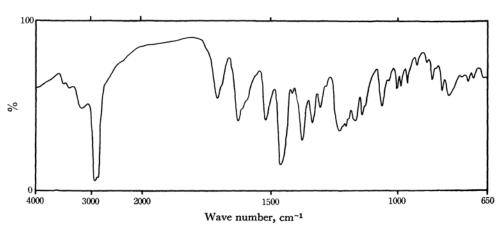


Fig. 1. IR spectrum of I (Nujol).

I R=H R'= CH2CO2H

VIII R = R'= Me

IX R= Me R'= CH2CO2Me

X R=Me R'= CH2CO2H

authors3) and also be Chandrashekar et al.4)

The reaction of the 2'-hydroxyisoflavone V with ethyl bromoacetate in the presence of anhydrous potassium carbonate afforded 7-benzyloxy-2'-carboethoxymethoxy-4',5'-dimethoxyisoflavone (VI) in a good yield. By catalytic hydrogenolysis over palladium-charcoal, the 7-benzyloxyisoflavone VI gave 2'-carboethoxymethoxy-4',5'-dimethoxy-7-hy-

V R = C6H5CH2 R'= H

VI R = C6H5CH2 R'= CH2CO2Et

VII R=H R'= CH2CO2Et

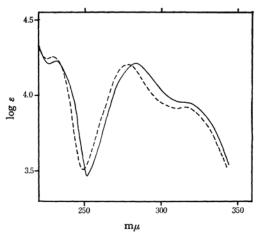


Fig. 2. UV spectra of I (-----) and IX (-----) in ethanol.

droxyisoflavone (VII), which was then easily converted into its monoacetate by conventional methods. The treatment of VII with alcoholic potassium hydroxide gave the desired acid, I, in a good yield. This was identified with an authentic

³⁾ K. Fukui, M. Nakayama and T. Harano, Experientia, 23, 613 (1967).

⁴⁾ V. Chandrashekar, M. Krishnamurti and T. R. Seshadri, *Tetrahedron*, 23, 2505 (1967).

specimen⁵⁾ by a mixed-melting-point determination and by infrared and ultraviolet spectral comparisons (Figs. 1 and 2).

The partial methylation of the acid I with diazomethane gave a methyl ester. A comparison of the NMR spectrum of the ester with that of the 2-hydroxy-4-methoxyphenyl 2,4,5-trimethoxybenzyl ketone (VIII)⁶⁾ (Table 1) indicated that the methylated specimen should be represented as 2-hydroxy-4-methoxyphenyl 2-carbomethoxymethoxy-4,5-dimethoxybenzyl ketone (IX). Finally, the hydrolysis of IX with dilute alkali gave tephrosic acid monomethyl ether (X), which had previously been obtained by an alternative route.³⁾

Since the synthesis of (\pm) -II from I has already been carried out,⁵⁾ this paper completes the presentation of a new synthesis of (\pm) -II.

Table 1. The NMR spectra of 2-hydroxyphenyl benzyl ketones VIII and IX*

Compound	VIII R=Me	$\begin{matrix} IX \\ R = CH_2CO_2Me \end{matrix}$
Arom. C ₃ -H	6.55 s	6.49 s
$C_6-\underline{H}$	6.75 s	6.75 s
$\mathbf{C_{3'}}\mathbf{-H}$	$6.40\mathrm{d}$	$3.68\mathrm{d}$
$\mathbf{C_5'}$ – \mathbf{H}	$6.40\mathrm{q}$	6.47 q
$\mathbf{C_{6'}}\mathbf{-H}$	$7.84\mathrm{d'}$	$7.94\mathrm{d}'$
$ArC\underline{H}_2-CO-Ar.$	4.17 s	4.29 s
$ArO-CH_2-CO_2Me$		4.62 s
ArOMe and -CO ₂ Me	3.82 (3H	3.75 (3H)
	3.85(6H)) 3.85 (9H)
	3.90 (3H)
OH	12.68	12.67

* The NMR spectra were measured with a Hitachi Model R-20 NMR spectrometer (60 β MHz), using tetramethylsilane as an internal standard (δ -values in CDCl₃; s, singlet; d, doublet (J_{meta} 2 Hz); d', doublet (J_{ortho} 9 Hz); q, quartet (J_{meta} 2 Hz; J_{ortho} 9 Hz).

Experimental*2

7-Benzyloxy-2' - carboethoxymethoxy - 4', 5' - dimethoxyisoflavone (VI). To a solution of isoflavone (V: mp 172—173°C)²⁾ (400 mg) and ethyl bromo-

acetate (200 mg) in anhydrous acetone (50 ml), anhydrous potassium carbonate (1.5 g) was added; the mixture was then refluxed for 24 hr. After the inorganic salts had been filtered off, the solution was concentrated to 5 ml and then diluted with water. The separated solid was collected and recrystallized from ethanol to give VI as colorless needles, mp 112—113°C; yield, 370 mg (77%). IR: 1736, 1640, 1620 cm⁻¹ (C=O). UV: λ_{max} m μ (log ε); 248 (4.39), 296 (4.29).

Found: C, 68.38; H, 5.27%. Calcd for $C_{28}H_{26}O_8$: C, 68.57; H, 5.30%.

2'-Carboethoxymethoxy-4',5'-dimethoxy-7-hydroxyisoflavone (VII). A solution of VI (320 mg) in ethyl acetate (100 ml) was submitted to catalytic hydrogenolysis at room temperature in the presence of Pd-C (10%: 90 mg). After the catalyst had been filtered off, the filtrate was evaporated under a vacuum; the residue was then recrystallized from ethanol to give VII as colorless microneedles, mp 217.5—218.5°C (lit.7') mp 217—218°C); yield, 240 mg (92%). IR: 3250 (OH), 1735, 1633 cm⁻¹ (C=O). UV: λ_{max} m μ (log ε); 255 (4.53), 296.5 (4.28), 336 (4.01).

Found: C, 63.08; H, 5.13%. Calcd for $C_{21}H_{20}O_8$: C, 62.99; H, 5.04%.

The acetate: acetic anhydride-anhydrous sodium acetate method; mp 137—138°C (colorless microneedles from ethanol). IR: 1768, 1733, 1655, 1625 cm⁻¹ (C=O). UV: λ_{max} m μ (log ε); 294 (4.12).

Found: C, 62.19; H, 4.93%. Calcd for $C_{23}H_{22}O_9$: C, 62.44; H, 5.01%.

Tephrosic Acid (2,4-Dihydroxyphenyl 2-Carboxymethoxy-4,5-dimethoxybenzyl Ketone) (I). To a solution of VII (200 mg) in ethanol (50 ml), a 10% aqueous potassium hydroxide solution (20 ml) was added; the mixture was then refluxed for 2 hr. After the solvent had been removed as much as possible, the residue was acidified with 10% hydrochloric acid. The separated solid was collected and recrystallized from aqueous ethanol to give I as colorless microcrystals, mp 193—195°C (lit., mp 197°C,¹) mp 192.5—194°C,⁵) mp 196°C⁵); yield, 100 mg (56%). It gave a reddishbrown color with an alcoholic ferric chloride solution. IR: 3530, 3430, 3230 (OH), 1715, 1638 cm⁻¹ (C=O). UV: λ_{max} m μ (log ε); 231 (4.22), 282 (4.21), 314₁ (3.96).**

Found: C, 58.07; H, 5.37%. Calcd for C₁₈H₁₈O₈-1/2H₂O: C, 58.22; H, 5.15%.

2-Hydroxy-4-methoxyphenyl 2-Carbomethoxymethoxy 4,5-dimethoxybenzyl Ketone (IX). I (25 mg) in ether (30 ml) was treated with an excess of diazomethane in ether. After standing at room temperature for 24 hr, the mixture was evaporated under a vacuum to dryness. The residue was recrystallized from ethanol to give IX as colorless needles, mp 125—126°C; yield, 25 mg (94%). It gave a reddish-brown color with an alcoholic ferric chloride solution. IR: 1740, 1635 cm⁻¹ (C=O). UV: λ_{max} m μ (log ε): 229 (4.25), 278 (4.20), 316 (3.92).

Found: C, 61.62; H, 5.57%. Calcd for $C_{20}H_{22}O_8$: C, 61.53; H, 5.68%.

Tephrosic Acid Monomethyl Ether (2-Hydroxy-4-methoxyphenyl 2-Carboxymethoxy-4,5-dimeth-

⁵⁾ H. Fukami, G. Sakata and M. Nakajima, Agr. Biol. Chem., 29, 82 (1965); the authentic sample of I was kindly supplied by Professor Hiroshi Fukami, Kyoto University.

⁶⁾ K. Fukui, M. Nakayama, M. Hatanaka, T. Okamoto and Y. Kawase, This Bulletin, 36, 397 (1960).

^{*2} All melting points are uncorrected; the infrared spectra were measured in Nujol, while the ultraviolet spectra were measured in ethanol.

⁷⁾ H. Fukami, private communication.

⁸⁾ E. P. Clark, J. Am. Chem. Soc., 54, 3000 (1932).

^{*3} i=inflection point.

oxybenzyl Ketone) (X). A mixtur of IX (10 mg), ethanol (10 ml), and a 10% aqueous potassium hydroxide solution (3 ml) was treated by a method similar to that used for I; mp 205—206°C (colorless microcrystals from ethanol) (lit. mp 206—207°C,3) mp 205—206°C,4) mp 204—205°C⁹). It gave a reddish-brown color with an alcoholic ferric chloride solution. IR: 3250 (broad)

(OH), 1735, 1635 cm⁻¹ (C=O). UV: λ_{max} m μ (log ε); 229.5 (4.27), 277 (4.24), 316 (3.97).

Found: C, 60.64; H, 5.28%. Calcd for C₁₉H_{t0}O₆; C, 60.63; H, 5.36%.

The authors are grateful to Professor Hiroshi Fukami, Kyoto University, for his gift of tephrosic acid. This work was supported in part by a grant-in-aid from the Ministry of Education.

⁹⁾ N. Finch and W. D. Ollis, Proc. Chem. Soc., 1960, 176.